Keras 模型如何可视化

我不确定你是怎么用 tf.keras 定义模型的,你的代码貌似有些问题。如果你是想用 TensorBoard 看 Keras 模型,可以用 keras.callbacks.TensorBoard。以 Keras 教程里的简单模型为例:

from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import TensorBoard

model = Sequential ()
model.add (Dense (32, activation='relu', input_dim=100))
model.add (Dense (1, activation='sigmoid'))
model.compile (optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])
tbcb = TensorBoard (log_dir='.')

# Generate dummy data
import numpy as np
data = np.random.random ((1000, 100))
labels = np.random.randint (2, size=(1000, 1))

# Train the model, iterating on the data in batches of 32 samples
model.fit (data, labels, epochs=10, batch_size=32, callbacks=[tbcb])

数据记录在了当前工作文件夹下("."),用 tensorboard --logdir=.即可看到计算图和相关记录。


yunhai_luo,发表于 2018-4-20 15:15:10