为什么 AlexNet、VGG、ResNet 等论文在图像增强时都不进行旋转

为什么 AlexNet、VGG、RestNet、DenseNet 等论文中的 data augmentation 都没有图像旋转?是考虑到旋转对尺寸的影响?还是什么原因?


winter,2018-5-27 17:39:34

NN 包括所有变体,本来就是个黑箱。
在多次迭代中,不断训练更新,
只要迭代的次数够大,也许就自我更新到哪一步时的处理和旋转效果差不多?


ZMikkelsen 发表于 2018-6-2 16:54:19

可能 test 集没有旋转? 很有意思的问题。可以做个测试


舟 3332 发表于 2018-6-8 21:45:44

卷积操作本身只具有平移不变性,不具有旋转不变性。所以首先应该考虑测试集中会不会出现图像旋转的情况,如果没有就不用考虑。如果测试集中存在图像旋转,那么要看训练集中有没有旋转的图像,如果有(并且足够多),也没必要做旋转的数据增强;如果没有,则需要做旋转的数据增强。总之,训练集和测试集要满足独立同分布,你要在测试集里验证什么信息,首先要在训练集中给出这种信息,神经网络才能够学习到。


nkcr7 发表于 2018-6-9 12:30:42

我觉得主要是看你需不需要增强吧,因为增强的话一般都是数据量不够什么的各种问题,所以。。。这就是为何它们不需要,

而且我觉得主要原因是当时都没人用,现在是趋势而已


ViolinSolo 发表于 2018-7-3 20:23:43

这些操作是数据扩充的方法。据扩充可以增强数据多样性和防止模型过拟合。这些用的 image 的库,李飞飞等已经进行过这些处理了


Lemon 发表于 2018-7-3 20:26:11